MATH 1010E University Mathematics
Lecture Notes (week 12)
Martin Li
1 Trigonometric Substitutions

Sometimes trigonometric functions can help us solve integrals that originally
do not contain any trigonometric functions in them. Let us consider the

following integral
/ V1 —2z2dz,
if we use the u-substitution method by setting z = sin 0, then dz = d(sin ) =

cos @ df and
\/1—x2 = \/l—sin29: Vcos2 8 = cos@.

Therefore, the integral becomes

in 3
/\/l—z2da::/cosé)-cosﬁd9:%<9+SH; 6>+C.
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We can write the answer back in terms of z by § = sin™" x and

sin 20 = 2sin O cosf = 2sin0/1 — sin20 = 221/1 — 22.

Therefore,

/Vl —a?de = %(sin‘la:ﬂ\/l —22) +C.

Question: What can we take cos@ > 0 so that vcos? § = | cos 6| = cos 8
in this example?

In fact there is a more geometric way to solve this integral. Remember
that the Fundamental Theorem of Calculus I says that

F(z) :z/oz\/l—tht

is a primitive function, i.e. F'(z) = V1 — z2.



Geometrically, F'(z) is a definite integral which computes the blue area
below:
Y
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The blue region consists of a circular sector and a right angled triangle.
Therefore, by elementary plane geometry,

F(z) = area of sector + area of triangle
0 4 sin @ cos 0
2 2
1 1
= §sin~1 z+ -zV1-— 22
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This gives the same answer as before.
Similar ideas can help us solve a number of integrals involving va? — 22,

a®? + z? or V22 — a2
Theorem 1.1 Let a > 0 be a positive constant. We have the following:
1 .1 (T
1 1 1/

1 1 /=
Proof: (1) Let x = asin#, then dz = acosf df and
1 1 1

VaZ—z2  VaZcos? acosf

Therefore,

1

1
/\/@2—1‘2 dx_/acos&

.acos@ df =0+ C =sin™" (g) ey



(2) Let z = atan®, then dz = asec® @ df and

1 1 1

a?+122 a2+ a2tan?20 a2sec?d’

Therefore, the integral becomes

1 1 . 1 1. /=
— dr= [ —— 0do == = N .
/a2+:c2 dz /azsec26 asec” 0 db a9+C _ tan (a)+C’

(3) Let z = asecd, then dz = asecftanf df and

1 1 1
V72 — a2 asecOvVaZsec?d — a2 a’secftanf’

Therefore, the integral becomes

1 asecftan@ df 0 1 _,rz
/x\/:ﬁ—a? dm_/ a?sectan @ —E+C—Esec (E)+C'

In summary, it is therefore suggestive (but not always) to use the fol-
lowing substitutions if we see expressions below:

2 2

a‘ —zx = T =asinf
2 2 _

a4z & T =atand
2% — a2 & T = asecl

Let us look at more examples below.
Example 1.2 Consider the integral
="
— dz,
4— g2
Let z = 2sin 8, then dxz = 2cosf df and

z®  8sin®6
4— 22 2cosf’




The integral becomes

z3 8sin3 6
T e = - 2cos df
[7= = [
= /85in39 do

= 8/sin2 0(sin 6 d6)

= 8/5in29 d(—cos8)

= —8/(1 — cos?6) d(cos )
= -8 (cos@ = COZB(Q) +C

29
= —8cosf (1 - COZ ) +C.

To rewrite it in terms of z, note that

o T
i 9 = = d 9 = 1 _ —
Sin D) an COS 4

Therefore,

z3 [ z2 1 22

Example 1.3 Consider the integral

1
/\/ +xdm,
l1—=zx

the integral as it is does not contain any a? — z
but we can transform it to

\/1+:II_\/(1+5E)2_ l1+z
1—z 1—22 1—z2

2, a® 4 z2 nor z2 — a2 term,




Therefore,

/ 1—{—."5(117 _ 142 da
l-z B V1-—2z?

/;dx+/—§——d:c
V1 — 22 V1—2z2
/ 11 d(1 — z?)

V1—22 2) Vi—a?
= sinlz—+1-22+C.

Example 1.4 Consider the integral

Il

/ dx
Vi + 22’
if we let = 2tan @, then dz = 2sec? df and

1 1
Vitz2 2sech’

Therefore, the integral becomes
/ de / 2sec?§ df
Vitz2 | 2sech

Rewriting back in terms of x, we use

=/sect9 df =In|secf + tan6| + C.

2
tan9=§ and secld = 1+%,
therefore,
dx 22 =
———=In{/1+—+=|+C.
/ V4 + z? 4 2

2 Reduction Formula

There is a useful technique called reduction formula that simplifies an inte-
gral in a systematic way. Let us look at the following example.

Example 2.1 Consider the integral

/cos" z dz,



when n = 0,

/cosoxdx:/ldz=x+C’.

/cosx dxr =sinz + C.

When n =1,

The question is then, do we have a general formula for the integral
I, = /cos”:z; dx

for a general positive integer n > 1?7

The idea is that we would hope to express I, in terms of some I, where
k < n. Then, we can get I,, for n large from our knowledge about I, for n
small. This can be usually achieved by integration by parts:

Iy = /cosnz dz = /cos""1 z(cosz dx)
= /cos"'_:l z d(sinx)
= sinzcos" lz — /Sinx d(cos™ 1 z)
= sinzcos" lz 4 (n—1) /sin2 zcos" 2z dx
= sinzcos" 'z + (n—1) /(1 — cos®z) cos" %z dz
= sinzcos" 'z 4 (n—1) /cos"_2 zdr—(n—1) /cos":c dx
= sinzcos" lz 4+ (n— 1)l — (n —1)I,.

Hence, if we move the I, term to the left hand side and then divide out the
constant, we obtain the following reduction formula:

1 . _ n—1
I, = Zsinzcos™ 'z +
n

In_o.

This formula tells us that I, is related to I,_s in a given way. Therefore,
when n is odd, the reduction goes like

Iy —>Iy 9— Iy g— - — 13— I =sinz+ C;



when n is even, we get
In—o>ILy o=y g— = —Iy=z+C.

In other words, we can get a general formula for I;, by working backwards
from the above chain. The general formula would be a bit complicated for
this example. If we are looking at definite integrals instead, sometimes the
formula is simpler. For example, since the extra term %sinaccos”"l z=0
when x = 0 or 7, the reduction formula reads

(NIE]

n

] -1 -1
L, = /2 cos" x dx = n / cos" 2z dr = n I, 5.
0 0

Applying this inductively, we get for n even,

-1
I, = “—I,
n
n—1n-3
= i
n n-—2 4
n—1n-—3 31

Exercise: Work out the formula for n odd.

Example 2.2 Let us look at a similar integral

/ sin” z dz,
0

We can derive a reduction formula as the previous example and hence
obtain a general formula for n. However, there is actually a much quicker
method using change of variable. Recall that

[NE]

sin (7r m) = cos
5 = cos z.
Therefore, if we let z = § — u, then doz = —du and when z = 0, u =
when z = 7, u = 0. Therefore,

3 B ™ 2
/ sin® z dx = / sin™ (— - u) (—du) = / cos™ u du,
0 z 2 0

2

Wl



which is the integral we have just studied above. Therefore, we have the

same formula since
jus s
2 2
/ sin"z dx = / cos" x dx.
0 0

Example 2.3 Derive a reduction formula for
1= /x"e‘”” dz, n>0
where a € R is a fized constant.

Using integration by parts, we have

I,,:/x”e”da: = 1

Q

8
S
QU
—~

Q)
=]
8
~—

1 1 ;
= Zglel _ e d(xn)
a a
1 n 1 o
= Zghear _ 2 vl leax dz
a a .
1 n
= ZphedT _ —]n—l
a a
Therefore, the reduction formula is
1 n
n _ar
I, = —x"e — —I,_;.
a

In this case, the parameter reduce by 1 only, so there is only one chain
In—>In_1 —> ---—)Ig—-)IQ—)Il —)Io,

and we just need to compute Iy explicitly to get all the I,,.
Challenging Exercise: Derive a reduction formula for

. / s - d >1
T n .
n Si 2’5”’ ’ =

3 Integrals of Piecewise Defined Functions

Sometimes a continuous function is defined piecewise. We discuss how to
integrate such functions in this section. Consider the following integral

/]a:| dzx.

8



For x > 0, we have

/|x|dmz/xdm:%x2+01

and for z < 0, we have

/]:c[ dx:/—:c dx=—%x2+C’2.

Note that C; and Co could be different constants. However, if we require

the function
%332 + C4 when > 0

Fii) = { —%xz +Cy whenz <0
to be continuous at x = 0, then we have to define F'(0) = C; = Cy. There-
fore, we have

1,2
o 32°+C  whenz >0
/|I| dz = Flg): { —22>+C whenz <0 (1)

where C is ONE arbitrary constant.
For definite integrals, we just split up the integrals into subintervals
where the function is defined by a single formula. For example,

1 0 1
/|$|d$ — / |mldw+/ | do
—1 -1 0
0 1
= / —xdm+/xdm
-1 0

1, 1.,
= —5.'132 +§$2

-1 0

O+3)+(G-0)=1

We can also use (3.1) together with the fundamental theorem of calculus
to evaluate the definite integrals:

/_llla:l dz =F(1) - F(-1) = <%+C) _ (_%H}) o

Note that it is important that the C’s are the same constant which allows
us to do the cancellation above.

Sometimes we do not need to find the primitive function first to evaluate
a definite integral. This could be achieved by a change of variable.



Example 3.1 FEwvaluate the definite integral

/2 :
/ sm9. db.
o cosf+sinf

As in Example 2.2, we can use the transformation 8 — 5 — 0 to get

w/2 5 /2
I= / B / _cosf
o cosf+sinf o cosf+sind

Therefore,

w2 cos @ /2 sin 6
2 = —df —— 8
/0 cosf + sinf +/0 cos @ +sind

B /”/2 cosf + sin @
o cosf+siné

/2
= / 1= =,
0 2

Therefore, I = 7/4.

4 Method of Partial Fractions

This section discuss a powerful method to evaluate integrals of rational
functions
x
/ p() 4.
q(z)

where p(z), ¢(z) are polynomials. For example, consider the integral

we want to break it into two terms:

L A, B
z(z-1) =z -1

where A, B are some constants to be determined. Since we know how to
integrate the right hand side, the only task remaining is to find A and B.
Note that

A B  Alz-1)+Bz

r z—1 z(z—1)

10



Therefore, we require

1 (A+B)x— A

z(x—1)  z(z—1)

Comparing the coefficients in the numerator, we get a system of linear equa-
tions

-A =1
which gives A = —1 and B = 1. As a result,

1 =1 1
/:c(x—l)dx /(m +x—1) dz n|z|+njz-1]+C

Example 4.1 If the denominator contains terms of degree two or higher,
we have to include up to those order as well:

z2 -2 A 5 B n C
z(z—1)2 2 z-1 (z-1)%
Expanding and compare coefficients, we get A = -2, B =3 and C = —1.
Notice that we can also write

{A+B =

2 _é Bx+C

g2
z(z—-1)2 =z (z—-1)%
which is actually equivalent to the form before since we can write

Br+C B(x-1)+(B+C) B B+C
(x—1)2 (z —1)2 T z-1" (z-1)2

Example 4.2 If the denominator is not given in “product form”, we would
have to factorize it first:

22—z+2 22—z 42 A B C

223 +322 -2z  z(z+2)(2x—1) :;+x+2 2z — 1

We can expand and compare coefficients as before to get A =1, B = 2/5
and C = -9/5.

Example 4.3 If the degree of numerator is larger than the degree of de-
nominator, we first do a long division to reduce the degree.

223 — 422 —x — 3 50— 3 A B
2 -2z -3 =kt 3 Bt 3t

2 -2z -3 z—3 z+1’
where we get A =3 and B = 2.
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Example 4.4 Sometimes we may not be able to factorize the denominator
completely into linear factors. For example,

1 _4 " Bz +C
z(z2+1) =z 2241’
expanding and compare we get A =1, B = —1 and C = 0. Therefore,

1 1 T 1
/:E(I2+1) /(I $2+1> dz = In |z| 5 n|z°+ 1| +C
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